MPC4
MATHEMATICS
Unit Pure Core 4

Thursday 25 January 20079.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 A curve is defined by the parametric equations

$$
x=1+2 t, \quad y=1-4 t^{2}
$$

(a) (i) Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$.
(ii) Hence find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Find an equation of the normal to the curve at the point where $t=1$.
(c) Find a cartesian equation of the curve.

2 The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=2 x^{3}-7 x^{2}+13$.
(a) Use the Remainder Theorem to find the remainder when $\mathrm{f}(x)$ is divided by $(2 x-3)$.
(2 marks)
(b) The polynomial $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=2 x^{3}-7 x^{2}+13+d$, where d is a constant.

Given that $(2 x-3)$ is a factor of $\mathrm{g}(x)$, show that $d=-4$.
(c) Express $\mathrm{g}(x)$ in the form $(2 x-3)\left(x^{2}+a x+b\right)$.

3 (a) Express $\cos 2 x$ in terms of $\sin x$.
(b) (i) Hence show that $3 \sin x-\cos 2 x=2 \sin ^{2} x+3 \sin x-1$ for all values of x.
(ii) Solve the equation $3 \sin x-\cos 2 x=1$ for $0^{\circ}<x<360^{\circ}$.
(c) Use your answer from part (a) to find $\int \sin ^{2} x \mathrm{~d} x$.

4 (a) (i) Express $\frac{3 x-5}{x-3}$ in the form $A+\frac{B}{x-3}$, where A and B are integers. (2 marks)
(ii) Hence find $\int \frac{3 x-5}{x-3} \mathrm{~d} x$.
(b) (i) Express $\frac{6 x-5}{4 x^{2}-25}$ in the form $\frac{P}{2 x+5}+\frac{Q}{2 x-5}$, where P and Q are integers.
(ii) Hence find $\int \frac{6 x-5}{4 x^{2}-25} \mathrm{~d} x$.

5 (a) Find the binomial expansion of $(1+x)^{\frac{1}{3}}$ up to the term in x^{2}.
(b) (i) Show that $(8+3 x)^{\frac{1}{3}} \approx 2+\frac{1}{4} x-\frac{1}{32} x^{2}$ for small values of x.
(ii) Hence show that $\sqrt[3]{9} \approx \frac{599}{288}$.

6 The points A, B and C have coordinates $(3,-2,4),(5,4,0)$ and $(11,6,-4)$ respectively.
(a) (i) Find the vector $\overrightarrow{B A}$.
(ii) Show that the size of angle $A B C$ is $\cos ^{-1}\left(-\frac{5}{7}\right)$.
(b) The line l has equation $\mathbf{r}=\left[\begin{array}{r}8 \\ -3 \\ 2\end{array}\right]+\lambda\left[\begin{array}{r}1 \\ 3 \\ -2\end{array}\right]$.
(i) Verify that C lies on l.
(ii) Show that $A B$ is parallel to l.
(c) The quadrilateral $A B C D$ is a parallelogram. Find the coordinates of D.

Turn over for the next question

7 (a) Use the identity

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
$$

to express $\tan 2 x$ in terms of $\tan x$.
(b) Show that

$$
2-2 \tan x-\frac{2 \tan x}{\tan 2 x}=(1-\tan x)^{2}
$$

for all values of $x, \tan 2 x \neq 0$.

8 (a) (i) Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} t}=y \sin t$ to obtain y in terms of t. (4 marks)
(ii) Given that $y=50$ when $t=\pi$, show that $y=50 \mathrm{e}^{-(1+\cos t)}$. (3 marks)
(b) A wave machine at a leisure pool produces waves. The height of the water, $y \mathrm{~cm}$, above a fixed point at time t seconds is given by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=y \sin t
$$

(i) Given that this height is 50 cm after π seconds, find, to the nearest centimetre, the height of the water after 6 seconds.
(ii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$ and hence verify that the water reaches a maximum height after π seconds.

END OF QUESTIONS

